Jules van Irsel

julesvanirsel.com | jules.van.irsel.gr@dartmouth.edu | (603) 266 8084

PROFESSIONAL SUMMARY

Graduate student adept in mechanical and electrical computer aided design, engineering, manufacturing, and testing. Proficient in the core branches of physics, multilingual computational physics, and large data management. Fundamentally, I have endless intellectual curiosity which enables me to have diverse strengths. I am *curious*, *conscientious*, and *interdisciplinary*.

EDUCATION

Dartmouth College	Hanover, NH
Doctor of Philosophy in Physics	Sep. 2019 – Present
University of Calgary	Calgary, AB
Bachelor of Science (Honours), Major in Astrophysics, 4.00	Sep. 2014 – June 2018
Southern Alberta Institute of Technology	Calgary, AB
Mechanical Eng. Tech. (Honours), Major in Design and Development, 4.00	Sep. 2012 – June 2014

PROFESSIONAL EXPERIENCE

Graduate Student Dartmouth College - K. A. Lynch - (603) 646 9311

Hanover, NH Sep. 2019 – Present

- Approved thesis proposal: Current Continuity in Auroral System Science: A 3D Modelling Approach to Current Closure in Non-Sheetlike Auroral Arcs: Expected defense: May 2025
- Proposed, and selected for graduate funding from, NASA's ROSES-2022 FINESST solicitation: Current Continuity in Auroral System Science: A 3D Modelling Approach to Current Closure in Non-Sheetlike Auroral Arcs
- Aided in developing NASA's ROSES-2022 HLCAS proposal: Geophysical Non-Equilibrium Ionospheric System Science (GNEISS, PI: K. A. Lynch) sounding rocket mission
- Aided in developing NASA's MIDEX-2019 proposal and through its Phase A Concept Study Report: Auroral Reconstruction CubeSwarm (ARCS, PI: K. A. Lynch)
- Produced a catalog of multifluid ionospheric 3D plasma simulations using the Geospace Environment Model of Ion-Neutral Interactions (GEMINI, github.com/gemini3d)
- Developed tools for driving GEMINI from multi-sourced data products, as well as visualizing the resulting rich output data volumes (github.com/317lab/aurora_gemini)
- Vacuum/plasma tested and wrote the GSE software for Petite Ion Probes and oversaw their integration onto NASA's Loss through Auroral Microburst Pulsations (LAMP, PI: A. Halford) sounding rocket

Instrument Design and Assembly Assistant	Calgary, AB
University of Calgary – J. K. Burchill – (403) 220 8108	$May \ 2018 - Aug. \ 2019$

- Mechanically and electrically redesigned the rocket Miniature Plasma Imager (rMPI) lowering its power consumption and introducing ion baffling
- Assisted in rMPI environment testing (vacuum, vibration, plasma, etc.) and oversaw its integration onto NASA's Cusp-Region EXperiment 2 (C-REX 2, PI: M. Conde) sounding rocket
- Oversaw integration of rMPIs onto NASA's VISualizing Ion Outflow via Neutral atom Sensing 2 (VI-SIONS 2, PI: D. Rowland) 2 sounding rocket

Research Internship

University of Calgary – J. K. Burchill – (403) 220 8108

Calgary, AB May 2017 – Oct. 2017

- Research project on ionospheric upflow in the topside F-Region
- Used ESA's Swarm's EFI data to perform a superposed epoch analysis using electron temperature enhancements (as a probe for electron precipitation) and ion vertical flow

Mechanical Design Engineer & MWD Technician

QCD Group of Companies - T. Russell - (403) 700 5355

Calgary, AB May 2014 – Oct. 2014

Virtual

Virtual

- Assembled, maintained, and serviced vertical shock absorbers used in Measurements While Drilling (MWD) technology
- Designed a first prototype of a bearing removal tool used in servicing the shock absorber

PUBLICATIONS

- van Irsel, J., Lynch, K. A., Mule, A., Zettergren, M. D., (2024), Generation of top boundary conditions for 3D ionospheric models constrained by auroral imagery and plasma flow data, *Journal of Geophysical Research: Space Physics.* Manuscript in preparation.
- Lynch, K. A., Erlandson, R., van Irsel, J. et al., (2024), Auroral Reconstruction CubeSwarm: A 2019 Heliophysics Medium-Class Explorer Phase A Concept Study Section E and D. Manuscript in prep.

Courses

ISR Summer School	Virtual
Theory, concepts, and hands-on experiment design for incoherent scatter radars	Jul. 2020
Machine Learning	Virtual
Coursera course on Supervised Machine Learning: Regression and Classification	<i>Dec. 2019</i>
Conferences	
2024 CEDAR Workshop	San Diego, CA
Poster: Current Continuity in Auroral System Science: Data-Driven Auroral GEMINI S	limulations
2023 AGU Fall Meeting	an Francisco, CA
Poster: Current Continuity in Auroral System Science: Defining a Catalog of Auroral GE	MINI Simulations
2023 CEDAR Workshop Poster: Current Continuity in Auroral System Science: Defining Electron Precipitation	San Diego, CA
2022 AGU Fall Meeting Poster: Auroral System Science: Determining Geophysical Boundary Conditions for Mul Simulations of Auroral Arcs	Chicago, IL tifluid Volumetric
2022 CEDAR Workshop Oral: Two Threads for 3D Auroral Modelling: How to Drive and How to See Poster: Auroral System Science: Multifluid 3D GEMINI Simulations of Auroral Arc Ion Closure	Austin, TX
2021 AGU Fall Meeting	Virtual
Oral: The Effect of Hall Conductance Gradients on Field-Aligned Currents in Non-Sheet-	Like Auroral Arcs

Poster: FAC Contributions from Hall Conductance Gradients in Non-Sheet-Like Auroral Arcs

2020 CEDAR Workshop

2021 CEDAR Workshop Meeting

Poster: Auroral Ionosphere: Combining Swarm Ion Flows and THEMIS Imagery with Machine Learning

2017 AGU Fall Meeting

New Orleans, LA

Banff, AB

Poster: Multi-scale investigation of low-altitude ion upflow and electron temperature correlations in the cusp/cleft ionoshphere

Fourth Swarm Science Meeting Volunteering opportunity

Awards/Scholarships

NASA FINESST : Future Investigators in NASA Earth and Space Science and Technology	2022
NSERC USRA: Undergraduate Student Research Award (Declined)	2018
PURE Award : Program for Undergraduate Research Experience Award	2017
Skills Alberta: 4th place in Mechanical Computer Aided Design and Drafting	2012

TECHNICAL SKILLS

Software: Autodesk Inventor, Autodesk Showcase, Solidworks, Solidworks Visualize, Paraview, VisIt, Dipstrace

Programming Languages: Python, MATLAB, Mathematica, Fortran, HTML/CSS, C

Developer Tools: Git, VS Code, Windows Subsystem for Linux, high performance computing, multi-threading, Slurm Workload Manager, Portable Batch System

Other: Computer Aided Design, surface-mount soldering, prototyping, Geometric Dimensioning and Tolerancing