Current Continuity in Auroral System Science: Data-Driven Auroral GEMINI 3D Simulations

Jules van Irsel¹, Alexander Mule¹, Johnathan Burchill², Donald Hampton³, Matthew Zettergren⁴, Kristina Lynch¹, Leslie Lamarche⁵, Meghan Burleigh⁶

> ¹Dartmouth College ²University of Calgary ³University of Alaska Fairbanks ⁴Embry-Riddle Aeronautical University ⁵SRI International ⁶US Naval Research Laboratory

Chapman Conference | Melbourne, Australia | February 17, 2025

Overview

I. Motivation & MethodologyII. Top-boundary driversIII. Simulation resultsIV. Comments & Conclusions

I. Motivation & Methodology

Why the need for 3D?

- Integrating over ionospheric altitudes can hide significant information about polar ionospheric systems (Yano and Ebihara, 2021, *JGR*).
 - E.g., altitude profiles of impact ionization balance with finite recombination times and low-altitude plasma transport.
- We want to study to which parameters 3D simulations are sensitive.
- Two examples of such sensitivities are:
 - A. The choice of electron precipitation energy spectra; **unaccelerated** vs. **accelerated** Maxwellians can significantly alter Hall/Pedersen conductance ratios.
 - B. The choice of an initial background electric field, \mathbf{E}_{bg} ; the non-uniqueness* of solutions, $\mathbf{E} + a\mathbf{E}_0$, to current continuity with $a \in \mathbb{R}$ and where \mathbf{E} , \mathbf{E}_0 are such that

 $j_{\parallel}(x, y) = \Sigma_{\mathrm{P}} \nabla \cdot \mathbf{E} + \mathbf{E} \cdot \nabla \Sigma_{\mathrm{P}} + (\mathbf{E} \times \mathbf{b}) \cdot \nabla \Sigma_{\mathrm{H}}$

 $0 = \Sigma_{\mathrm{P}} \nabla \cdot \mathbf{E}_{0} + \mathbf{E}_{0} \cdot \nabla \Sigma_{\mathrm{P}} + (\mathbf{E}_{0} \times \mathbf{b}) \cdot \nabla \Sigma_{\mathrm{H}}$

What's needed to simulate auroral arcs in 3D?

A. 2D, top-boundary maps of

- Electron precipitation energetics
 - Determines 3D conductivity volume
 - Requires imagery, choice of energy spectra, and a transport model
- Field-aligned current
 - Forces the simulation
 - Requires 1D track data + replication
- A background electric field

B. A 3D Model: GEMINI

- Provides state-of-the-art, 3D ionospheric, multi-fluid simulations
- Github.com/gemini3d

507 km 80 km Fairbanks • Imagery Anchorage

PFISR

GEMINI model: Zetergren & Semeter, 2012, *JGR*; Zettergren & Snively, 2019, *GRL* Swarm data: swarmhandbook.earth.esa.int – PFISR data: data.amisr.com

5

Top-boundary

II. Top-Boundary Drivers

Choosing Electron Precipitation Energy Spectra

7

Choosing Electron Precipitation Energy Spectra

Choosing Electron Precipitation Energy Spectra

Determining Source Region Thermal Energy, T_s

1) Invert multi-spectral imagery assuming unaccelerated Maxwellian spectra.

Determining Source Region Thermal Energy, T_s

- 1) Invert multi-spectral imagery assuming unaccelerated Maxwellian spectra.
- 2) Filter for low energy fluxes (where we assume $U_d \approx 0$) and low 630 nm light.

Determining Source Region Thermal Energy, T_s

- 1) Invert multi-spectral imagery assuming unaccelerated Maxwellian spectra.
- 2) Filter for low energy fluxes (where we assume $U_d \approx 0$) and low 630 nm light.
- 3) Find T_s , the peak energy of filtered E_0 .

12

Determining Source Region Thermal Energy, T_s

- 1) Invert multi-spectral imagery assuming unaccelerated Maxwellian spectra.
- 2) Filter for low energy fluxes (where we assume $U_d \approx 0$) and low 630 nm light.
- 3) Find T_s , the peak energy of filtered E_0 .
- 4) Invert imagery using accelerated spectra.

Choosing a Background Electric Field PFISR

SuperDARN

J. van Irsel

Imagery data: optics.gi.alaska.edu/optics/archive – SuperDARN data: superdarn.ca/convection-maps

Choosing a Background Electric Field

SuperDARN

Choosing a Background Electric Field

SuperDARN

Top-Boundary Driver: Field-Aligned Current

- We convert 1D FAC data tracks into continuous 2D top-boundary drivers.
- Github.com/317Lab/aurora_gemini (van Irsel et al., 2024, JGR)

III. Simulation Results

Simulation comparisons:

J. van Irsel

Height-Integrated View, Weak Ebg

Height-Integrated View, Weak Ebg

Height-Integrated View, Strong Ebg

J. van Irsel

IV. Conclusions

Comments & Conclusions

- The height-integrated view of the auroral ionosphere, albeit very useful, can hide the 3D nature of current continuity.
- Simulating auroral arc systems in 3D is a sensitive undertaking:
 - A. The electric potential solution is not unique mathematically:
 - An inappropriate background electric field can provide erroneous current closure morphology.
 - Sensitivity to the choice of precipitation spectra matter more with a weak background electric field.
 - B. The choice of unaccelerated Maxwellian electron precipitation spectra can:
 - Overestimate the thermal spread, hence overestimate lower E-region densities.
 - Impact Hall closure and Hall-to-Pedersen conductance ratios.
- jules.van.irsel.gr@dartmouth.edu
- We thank Daniel Billett for providing SuperDARN flow estimates.

The authors acknowledge the use of SuperDARN data. SuperDARN is a collection of radars funded by national scientific funding agencies of Australia, Canada, China, France, Italy, Japan, Norway, South Africa, United Kingdom and the United States of America. The AMISR/PFISR facilities are funded by the National Science Foundation through cooperative agreement AGS-1840962 to SRI International.